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industrial and research robot manipulators having
positioning (tracking) controllers. The fact that most
industrial manipulators already have some kind of
positioning controller is the motivation behind our
approach. Also, a number of methodologies exist for the
development of robust positioning controllers for direct
and non-direct robot manipulators.5

In general, the end-point position of a robot
manipulator that has a positioning controller is a
dynamic function of its input trajectory vector, e, and the
external force, f. Let G and S be two functions that
describe the robot end-point position, y, in a gobal
coordinate frame. * (f is measured in the global

coordinate frame also.)

SUMMARY
The work presented here is the description of the control
strategy of two cooperating robots. A two-finger hand is
an example of such a system. The control method allows
for position control of the contact point by one of the
robots while the other robot controls the contact force.
The stability analysis of two robot manipulators has been
investigated using unstructured models for dynamic
behavior of robot manipulators. For the stability of two
robots, there must be some initial compliance in either
robot. The initial compliance in the robots can be
obtained by a non-zero sensitivity function for the
tracking controller or a passive compliant element such
as an RCC.
KEYWORDS: Compliance; Stability analysis; Coopera-
ting robots; Control strategy.

INTRODUCfION
The paper develops the essential rules in stability
analysis of two cooperating robots. We assume the
robots initially have some type of independent tracking
capabilities. This assumption permits us to extend the
control analysis to cover industrial robot manipulators in
addition to research robots. The tracking capability
allows each robot to follow its individual command
independently when it is not constrained by each other.
Once the robots come in contact with each other, the
contact force between the two robots is fed back to one
of the robots to develop compliance.l-4 The compliance
in one of the robots allows for control of the contact
force, while the other robot governs the position of the
contact point. A stability bound has been developed on
the size of the force feedback gain to stabilize the closed
loop system of both robots. The stability analysis has
been investigated using unstructured models for the
dynamic behavior of the robot manipulators. This unified
approach of modeling robot dynamics is expressed in
terms of sensitivity functions as opposed to the
Lagrangian approach. It allows us to incorporate the
dynamic behavior of all the elements of a robot
manipulator (i.e. actuators, sensors and the structural
compliance of the links) in addition to the rigid body
dynamics.4

y = G(e) + S(f) (1)

The motion of the robot end-point in response to
imposed forces, I, is caused either by structural
compliance in the robot or by the compliance of the
positioning controller. In a simple example, if a Remote
Center Compliance (RCC) with a linear dynamic
behavior is installed at the endpoint of the robot, then S
is equal to the reciprocal of stiffness (impedance in the
dynamic sense) of the RCC. Robots with tracking
controllers are not infinitely stiff in response to external
forces (also called disturbances). Even though the
positioning controllers of robots are usually designed to
follow the trajectory commands and reject disturbances,
the robot end-point will move somewhat in response to
imposed forces on it. S is called the sensitivity function
and it maps the external forces to the robot end-point
position. For a robot with a "good" positioning
controller, S in a mapping with small gain. No
assumption on the internal structures of G(e) and S(f)
are made. Figure 1 shows the nature of the mapping in
equaton (1).

Figure 2 shows one possible example of internal
structure of the model represented by equation (1). The

* The assumption that linear superposition (in equation (1»
holds for the effects of f and e is useful in understanding the
nature of the interaction between two robots. This interaction
is in a feedback form and will be clarified with the help of
Figure 3. We will note later that the results of the nonlinear
analysis do not depend on this assumption, and one can extend
the obtai~ed results to cover the case when G(e) and S(f) do

DYNAMUC MODEL OF THE ROBOT
In this section, a general approach will be developed to

manipulators
H. Kazerooni
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transfer functions as general representations of the
dynamic behavior of the components of the robot (e.g.
servovalves in the hydraulic robots and the gear stiffness
in the non-direct drive systems). Throughout this paper
we assume the robot dynamic behavior is given by
equation (1) where G(e) and S(f) can be computed
experimentally or analytically from the closed loop block
diagram similar to the one given in Figure 2. A robot
with good tracking capability has a small gain for S
(rejects all the forces) while a robot with a weak tracking
capability has a large gain for S. In fact, an open loop
robot-which has the weakest tracking capability-can be
modeled with the largest gain on S. If we define an open
loop robot as a system with very small feedback gain (Kp
and Kv-O in the case of Figure 2) then equation
(I)-with a large gain for S -can be used to model the
open loop robots also. Therefore we define G(e) and
S(f) as stable, nonlinear operators in Lp-space to
represent the dynamic behavior of not only the closed
loop robots but also the open loop (in the sense of above
definition) robots. G(e) and S(f) are such that
G: L;t-+L;, S: L;t-+L; and also there exist constants
aG, f3G, as and f3s such that IIG(e)llp:S aG lie lip + f3G and
IIS(f)llp =5 as Ilfilp + f3s. as is called the gain of operatorS.

f

+

~()-_!_'-'
Fig. 1. The dynamics of the robot. All the operators of the
block diagrams are unspecified and may be transfer function
matrices or time domain input-output relationships.

A similar modeling method can be given for analysis of
the linearly treated robots. * The transfer function

matrices, G and S in equation (2) are defined to describe
the dynamic behavior of a linearly treated robot
manipulator with positioning controller.

y(jw) = G(jw )e(jw) + S(jw )f(jw) (2)

In equation (2), S is called the sensitivity transfer
function matrix and it maps the external forces to the
end-point position. G(jw) is the closed loop transfer
function matrix that maps the input trajectory vector, e,
to the robot end-point position, y. For a robot with a
"good" positioning controller, within the closed loop
bandwidth S(jw) is "small" in the singular value sense,
while G(jw) is approximately a unity matrix. We define

robot open loop dynamic equation is M( 8)6 +
C(8, 8)+Gr(8)=1:+IIt where M(8), C(8, 8), Gr(8)
andlc are the inertia matrix, coriolis, gravity forces and
the Jacobian. With the help of two mappings, T} and Tz,
we define 8d and 8 as the desired position and the actual
position of the robot in the joint coordinate frame. PI
and P2 are computer programs that calculte the best
estimated values of nonlinear terms in robot dynamics.
Kp and Kv are appropriate position and velocity gains to
stabilize the system (5). The system in Figure 2 with two
inputs (e and f), and one output, y, can be represented
by block diagram of Figure 1. Note that equation (1) is
not necessarily restricted to be composed of the elements
of the block diagram of Figure 2; the block diagram of
Figure 2 is given here as an example to show how one
can actually model a robot with equation (1). Also note
that the model given by equation (1) is not meant to be
valid for controller design; it is only for the purpose of
stability analysis.

Equation (1) represents an input/output functional
relationship. This unified approach of modeling allows us
to incorporate the dynamic behavior of all the elements
of the robot. We believe that there may be enough
components in the robot itself that rigid body dynamics
(as given in Figure 2) is not sufficient for modeling. In
fact, in many industrial hydraulic robots, the actuators
and the servovalves dynamics dominate the total
dynamic behavior of the robots. We try to avoid using
structured dynamic models such as first or second order

* Throughout this paper, for the benefit of clarity, we develop

the frequency domain theory for linearly treated robots in
parallel with the nonlinear analysis.

Fig. 2. An example to develop positioning controller for a robot manipulator with rigid body dynamics. M(O), C(8, 0) and G,(O)
are the estimated values (5).
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S-1 as inverse function of the S function:

f = S-I(y -G(e» e2 ~(3)

DYNAMICS OF TWO ROBOTS
Suppose two manipulators with dynamic equation (1) are
in contact with each other. Equations (4) and (5)
represent the entire dynamic behavior of two interacting
robots.

-

1:---(~)4---

~

Yl"= G1(eJ + Sl(h)

h = S"i1(Y2 -G2(eJ)
(4)

(5)
Fig. 4. VI and V2 describe the contributions of both inputs, el
and e2.

where
and It = -fzYl = Y2 THE CLOSED-LOOP SYSTEM FOR TWO

ROBOTS
The control architecture in Figure 5 shows how we
develop compliancy in the system. H2 is a compensator
to be designed for the second robot. The input to this
compensator is the contact force, /2. The compensator
output signal is being added vectorially with the input
command vector, r2, resulting in the error signal, e2 for
the second robot manipulator. One can think of this
architecture as a system that allows the second robot to
"control" the force and the first robot to "control" the
position.

There are two feedback loops in the system; the first
loop (which is the natural feedback loop), is the same as
the one shown in Figure 3. This loop shows how the
contact force affects the robots in a natural way when
two robots are in contact with each other. The second
feedback loop is the controlled feedback loop.

If two robots are not in contact, then the dynamic
behavior of each robot reduces to the one represented by
equation (1) (with f = 0), which is a simple tracking
system. When the robots are in contact with each other,
then the contact forces and the end-point positions of
robots are given by h, /2, ):'1 and Y2 where the following
equation are true:

Figure 3 shows the block diagram of the interaction of
two robots. Note that the blocks in Figure 3 are in
general non-linear operators, however, in the linear case
one can treat these blocks as transfer function matrices.
If all the operators of the block diagram in Figure 3 were
transfer function matrices, then the contact force, b,
could be calculated from equation (6).

/2 = (SI + ~)-I(GleI -G2e2) (6)

Equation 6 motivates the block diagram of Figure 4 for
representation of the contact force in the system where
VI and V2 are given by equations (7) and (8).

VI = (SI + ~)-IG1 (7)

~ = (SI + ~)-IG2 (8)

/2 = V1el -V2e2 (9)

We assume Figure 4 is valid for representation of the
non-linear case also. In other words, considering
equations (4) and (5) as original equations for dynamic
behavior of the robots, one can arrive at operators VI
and V2 to show the contributions of el and e2 on the
contact force. We assume VI and V2 are two Lp-stable
operators, in other words VI(eJ: L;~L; and
V2(e2): L;~L; and also there exist positive scalars aI,
a2, fJl and fJ2 such that:

Yl = G1(eJ + Sl(fJ

fz = S;:-1(Y2 -G2(e2»
(12)

(13)

(14)

(15)

(16)

IIVt(eJllp oS £t'tlletllp + P1

II V2(e2) lip oS £t'211e211p + P2

(10)

(11)

Yl = Y2

A+fz=O
e2 = '2 + H2(fz)See Appendix A for some definitions on the Lp stability.

Fig. 3. Interaction of two robots
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Fig. 5. The closed-loop system, the first robot controls the position and the second robot controls the force.

Gain Theorem)6.7 states the stability condition of the
closed-loop system shown in Figure 6. A corollary is
given to represent the size of H2 to guarantee the
stability of the system.

If condition I, II and III hold:
I. Vi and V2 are Lp-stable operators, that is Vi(eJ: L;H-
L; and V2(e2): L;H-L; and:

a) IIVI(eJllp ~ al lIeIllp + PI

b) II V2(e2) lip ~ a211e211p + P2

ll. H2 is chosen such that mapping H2(h) is Lp-stable
that is

(20)

(21)

a) H2(k): L;~L;
b) IIH2(f2) lip oS «311kllp + fJ3

HI. and «2«3< 1

If an the operators are considered linear transfer
function matrices, then:

h = (51 + ~ + G2H2)-I(Glel- GV2) (17)

We plan to choose a class of compensators, H2' to
control the contact force with the input command r2.
This controller must also guarantee the stability of the
closed-loop system shown in Figure 5. Note that the
robot sensitivity functions and the electronic compliancy,
G2Hb add together to form the total sensitivity of the
system. If H2 = 0, then only the sensitivity functions of
two robots add together to form the compliancy of the
system. By closing the loop via H2, one can not only add
to the total sensitivity but also shape the sensitivity of the

system.
When two robots are not in contact with each other,

the actual end-point position of each robot is almost equal
to its input trajectory command governed by equation (1)
(with f = 0). When the robots are in contact with each
other, the contact force on the second robot follows r2
according to equations (12)-(16). The input command
vector, rz, is used differently for the two categories of
maneuverings of the second robot; as an input trajectory
command in unconstrained space (equation (1) with
f = 0) and as a command to control the force in
constrained space.

then the closed loop system in Figure 6 is stable. The
proof is given in Appendix A. The following corollary
develops a stability bound if H2 is selected as a linear
transfer function matrix.

Corollary
The key parameter in the proposition is the size of a2a3.
According to the proposition, to guarantee the stability
of the system, H2 must be chosen such that a2a3 < 1. If
H2 is chosen as a linear operator (the impulse response)
while all the other operators are still nonlinear, then:

IIH2(h)llp.s y Ilhllp (23)

STABILITY
The objective of this section is to arrive at a sufficient
condition for stability of the system shown in Figure 5.
This sufficient condition leads to the introduction of a
class of compensators, Hz, that can be used to develop
compliancy for the class of robot manipulators that have
positioning controllers. The following theorem (Small

where
y = amax(N)

__2-..()___~:.-

-

+--l:.--()

Fig. 6. Two manipulators with force feedback compensator.
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lJmax* indicates the maximum singular value, and N is a
matrix whose ijth entry is IIH2(.);jII1. In other words,
each member of N is the Ll norm of each corresponding
member of H2(') (pulse response). Considering ine-
quality 23, the third stability condition, inequality 22, can
be rewritten as:

ya2 < 1 (25)

To guarantee the closed loop stability, Ya'z must be
smaller than unity, or, equivalently:

1
y<- (26)

a'z

To guarantee the stability of the closed loop system, Hz
must be chosen such that its "size" is smaller than the
reciprocal of the "gain" of the forward loop mapping in
Figure 6. Note that y represents a "size" of Hz in the
singular value sense.

When all the operators are linear transfer function
matrices one can use Multivariable Nyquist Criterion to
arrive at the sufficient condition for stability of the closed
loop system. This sufficient condition leads to the
introduction of a class of transfer function matrices, Hz,
that stabilize the family of linearly treated robot
manipulators. The detailed derivation for the stability
condition is given in Appendix B. Appendix C shows
that the stability condition given by Nyquist Criterion is a
subset of the criteria given by the Small Gain Theorem.
Using the results in Appendix B, the sufficient condition
for stability is given by inequality 27.

1
Vw e (0,00) (27)

Consider n = 1 (one degree of freedom system) for
more understanding about the stability criterion. The
stability criterion when n = 1 is given by inequality 28.

IG2H21 < ISI + ~I V(O E (0,00) (28)

where 1.1 denotes the magnitude of a transfer function.
Since in many cases G2 = 1 with the bandwidth of the
tracking controller of each robot, (00' then H2 must be
chosen such that:

IH21 < ISI + ~I V(O E (0, (00) (29)

Inequality 29 reveals some facts about the size of H2.
The smaller the sensitivity functions of the robot
manipulators are, the smaller H2 must be chosen. In the
"ideal case", no H2 can be found to allow two perfect
tracking robots (SI = ~ = 0) interact with each others. In
other words, for the stability of the system shown in
Figure 5, there must be some compliancy in either first or
second robot. RRC, structural dynamics, and the
tracking controller stiffness form the compliancy on the
robot.

Suppose, the first robot is an ideal positioning system.
In other words, SI has a zero gain. Therefore the contact
force and the position of contact point between two
robots are:

amax(Hz) < -

amax«S) + ~)-lGV

Similar to the nonlinear case, Hz must be chosen such
that its "size" is smaller than the reciprocal of the "size"
of the forward loop mapping in Figure 7 to guarantee the
stability of the closed loop system. Note that in
inequality 27 omax represents a "size" of Hz in the
singular value sense.

h~= (~+ G2HJ-1(G1el- GvJ (30)
Yl~ = G1(eJ (31)

The first robot controls the position of the contact point,
while the other controls the contact force. Generalizing
this concept to n robots, one robot controls the position
of the contact point while the other robots control the
n -1 contact forces such that:

it + h + 13 + ...+ In = 0 (32)

EXAMPLE
Consider two one-degree of freedom robots with G and
S in equation (1) given as:

* The maximum singular value of a matrix A, CJm..(A) is
defined as: 1G2(s) =IAzl

(s/6+ l)(s/lO+ 1)(s/200+ 1)(s/250+ 1)(s/300+ 1)

0.1 ~(s) = 0.05

umax(A) = max !---I .
zl

where z is a non-zero vector and I-I denotes the Euclidean
norm.

---

(s/5+ 1)(s/9+ 1)(s/4+1)(s/8+1)
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APPENDIX A
Definition 1 to 7 will be used in the stability proof of the
closed-loop system (6,7).

c

10 Definition 1: For all p E (1,00), we label as L; the set
consisting of all functions f = (h, h, ...,fn)T: (0, 00) 1-+
~n such that:o'

, --':'1~" -,",
~
\

10 a: IG2H21,H2 =1

b: IG 2H21, H2 =0.25
c: IG2H21, H2=0.05

d: Isl +s21

[lhIPdt<oo for i = 1, 2,10-

10-71

,n

Definition 2: For all T E (0,00), the function IT defined
by;

.rad/sec.
1 0" I I. ...I. ...I , 10.2 1 0.1 100 101 102 103

Fig. 8. IG2H21 < 1St + ~I is a sufficient condition for stability

Both robots have good positioning capability (small gain
for S). The poles that are located at -250, -300, -290,
-240 show the high frequency modes in the robots. The
stability of the robots when they are in contact with each
other is analyzed. If we consider H2 as a constant gain,
then inequality 28 yields that for H2 $ 0.08 the value of
IG2H21 is always smaller than IS, + ~I for all WE (0,00).
Figure 8 shows the plots of IG2H21 and IS, + ~I for three
values of H2. For H2 = 0.05 the system is stable with the
closed loop poles located at (-456.71, -147.24:t:
172.37j, -9.41, -8.38, -5.62, -4.58) while H2 = 1
results in unstable system with the closed loop poles
located at (-800.88, -9.03, -8.05, -5.05, -4.13,
23.98 :t: 477.35j). Note that the stability condition
derived via inequality 28 is a sufficient condition for
stability; many compensators can be found to stabilize
the system without satisfying inequality 28. Figure 8
shows an example (H2 = 0.25) that does not satisfy
inequality 28 however the system is stable with closed
loop poles at (-598.64, -76.87:t: 298.04j, -9.1, -8.15,
-5.19, -4.36). If one uses root locus for stability
analysis, for H2 $ 0.75 all the closed loop poles will be in
the left half plane. Once a constant value for stabilizing
H2 established, one can choose a dynamic compensator
to filter out the high frequency noise in the force
measurements.

_ (I OStsT
IT -0 T s t

is called the truncation of I to the interval (0, T).

Definition 3: The set of all function 1= (h, h, ..., In)T:
(0, 00) ~ ~n such that IT E L; for all finite T is denoted by
L~. I by itself or may not belong to L;.

Definition 4: The norm on L; is defined by;
( n )1/2 Ilfllp= ~ Ilhll~

where Iltllp is defined as

where Wi is the weighting factor. Wi is particularly useful
for scaling forces and torques of different units.

Definition 5: Let V2(.): L;e~L;e' We say that the
operator V2(.) is Lp-stable, if:

a) V2(.): L;~L;

b) there exist finite real constants «2 and .82 such that:

II Vz(e2) lip oS Q'21leillp +.82 'v'e2 E L;

According to this definition we first assume that the
operator maps L;e to L;e. It is clear that if one does not
show that V2(.): L;e ~ L;e, the satisfaction of condition
(a) is impossible since L;e contains L;. Once the
mapping of V2(.) from L;e to L;e is established, then we
say that the operator V2(.) is Lp-stable if whenever the
input belongs to L; the resulting output belongs to L;.
Moreover, the norm of the output is not larger than «2
times the norm of the input plus the offset constant fJ2'

CONCLUSION
A new architecture for compliance control of two
cooperating robots has been investigated using unstruc-
tured models for dynamic behavior of robots. Each robot
end-point follows its position input command vector
"closely" when the robots are not in contact with each
other. When two robots come in contact with each other,
one robot controls the position of the contact point,
while the other controls the contact force. The unified
approach of modeling robots is expressed in terms of
sensitivity functions. A bound for the global stability of
the manipulators has been derived. For the stability of
two robots, there must be some initial compliancy in
either robot. The initial compliancy in the robots can be
obtained by a non-zero sensitivity function for the
tracking controller or a passive compliant element such
as an RCC.

Definition 6: The smallest «2 such that there exists a
constant fJ2 so that inequality b of Definition 5 is satisfied
is called the gain of the operator Vz(.).

Definition 7: Let V2(.): L;e'-'+ L;eo The operator V2(.) is
said to be causal if:

~(e2)T = V2(e2T )VT < 00 and Ve2 E L;e
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PROOF OF THE NONLINEAR STABILnY

PROPOSmONDefine the closed-loop mapping A: (e 1, rz) 1-+ e2 (Figure6).

ez = rz + Hz(V1(eJ ~ Vz(ez» (AI)

For each finite T, inequality A2 is true.

\lezr\lp ~ \lrzr\lp + IIHz(V1(eJ -Vz(e2»rllp VT<oo
A "'I

Criterion. The block diagram in Figure 7 can be reduced
to the block diagram in Figure B1 when all the operators
are linear transfer function matrices.

There are two elements in the feedback loop; GzHzSll
and SzSll .SzSll shows the natural force feedback while
GzHzSll represents the controlled force feedback in the
system. The objective is to use Nyquis~ Criterion8 to
arrive at the sufficient condition for stability of the
system when Hz = O. The following conditons are noted:
1) The closed loop system in Figure B1 is stable if
Hz = O. This condition simply states the stability of two
robot manipulators. (Figure 4 shows this configuration.)
2) Hz is chosen as a stable linear transfer function
matrix.. Therefore the augmented loop transfer function
(GzHzSll + SzSll) has the same number of unstable
poles that SzSll has. Note that in many cases .S'zSll is a

stable system.3) Number of poles on jw axis for both loops .S'zSll and

(GzHzSll + .S'zSll) are equal.
Considering that the system in Figure B1 is stable

when Hz = 0 we plan to find how robust the system is
when GzHzSll is added to the feedback loop. If the loop
transfer function .S'zSll (without compensator, Hz)
develops a stable closed-loop system, then we are
looking for a condition on Hz such that the augmented
loop transfer function (GzHzSll + .S'zSll) guarantees the
stability of the closed-loop system. According to the
Nyquist Criterion, the system in Figure B1 remains
stable if the anti-clockwise encirclement of the
det (GzHzSll + SzSl + IJ around the center of the
s-plane is equal to the number of unstable poles of the
loop transfer function (GzHzSll + SzSll). According to
conditions 2 and 3, the loop transfer functions .S'zSll and
(GzHzS11 + .S'zSll) both have the same number of
unstable poles. The closed-loop system when Hz = 0 is
stable according to condition 1; the encirclements of
det (SzSll + In) is equal to unstable poles of .S'zSll. Since
the number of unstable poles of (GzHzSll + .S'zSll) and
that of .S'zSll are the same, therefore for stability of the
system det.(GzHzSll + SzSll + In) must have the same
number of encirclements that det.(SzSll + In) has. A
sufficient condition to guarantee the equality of the
number of encirclements of det (GzHzSll + .S'zSll + In)
and that of det (.S'zSll + In) is that the det.(GzHzSll +
.S'zSll + In) does not pass through the origin of the
s-plane for all possible non-zero but finite values of Hz,

or

Hz(V1(eJ -Vz(ez)) is Lp-stable, therefore, using ine-

qualities 18, 19, and 21:

IleZTllp:S IlrZTlip + lX3lXl \lelTllp + lX3lXz \lezT\lp
+ lX3{31 + lX3{3z + {33 VT < (X) (A3)

Since lX3lXz is less than unity:

\lezT\lp:sJl~ + J!!:!:TI1P-
1 -lX3lXz 1 -lX3lXz

lX3({31 + (3z) + {33 VT < (X) (A4)
~ -

-I-
1 -«3«Z

Inequality A4 shows that ez(") is bounded over (0, T).
Because this reasoning is valid for every finite T, it
follows that ez(") E L;e, i.e., that A: L;e~L;e' Next we
show that the mapping A is Lp-stable in the sense of
Definition 5. Since Ilrzllp and Ilelllp < 00 (they both belong
to L;e space), then from inequality A4:

lIeZTllp<OO VT<oo (AS)

In the limit when T -+ 00:

Inequality (A7) shows the linear boundedness of e2.
(Condition b of Definition 5). Inequality (A7) and (A6)
taken together, guarantee that the closed-loop mapping

A is Lp-stable.

APPENDIX B
The objective is to find a sufficient condition for stability
of the closed-loop system in Figure 7 by Nyquist

det(G2H2S11+~S11+In)*O Vwe(O,oo) (Bl)
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If inequality Bl does not hold then there must be a
non-zero vector z such that:

(G2H2S11 + ~S11 + In)z = 0

G2H2S11z = -(~S11 + In)z
(B2)
(B3)or

Note that the following are true;

amax(Vz).$.u Va> E (0, 00) (C4)

amax(Hz).$ v Va> E (0,00) (C5)

Substituting C4 and C5 inequality C3 which guarantees
the stability of the system, the following inequality is
obtained;

A sufficient condition to guarantee that equality B3 will
not happen is given by inequality B4.

1amax(H2) < -
Vw E (0, 00)

(]max(V2)
1

amax(G2H2S11) < amin(~S11 + In) Vw E (0,00) (B4)

omax(Hz) < ~«Sl + SZ)-lGz)

Inequality C7 is identical to inequality 27. This shows
that the linear stability condition by the multivariable
Nyquist Criterion is a subset of the general stability
condition given by the Small Gain Theorem.

Va> E (0,00) (C7)or a more conservative condition;

-VOw e (0,00) (B5)

Note that (8} + ~)-IG2 is the transfer function matrix
that maps e2 to the contact force, h when e} = O. Figure 7
shows the closed-loop system. According to the result of
the proposition, H2 must be chosen such that the size of
H2 is smaller than the reciprocal of the size of the
forward loop transfer function, (81 + ~)-IG2.

APPENDIX C
The following inequalities are true when p = 2 and H2
and V2 are linear operators.

IIH2(k)llp s Ilkllp (Cl)

IIV2(e2)llpsJllle21Ip (C2)
where:

Jl = amax(Q), and Q is the matrix whose ijth

entry is given by (Q)ij = SUPai I(V2)ijl,

v = amax(R), and R is the matrix whose ijth

entry is given by (R)ij = SUPai I (HJij I

According to the stability condition, to guarantee the
closed loop stability JlV < lor:
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